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Abstract:

The effects of multiple-scattering on coda waves have been investi-

gated by an extension. of the single-s~attering  theory. The contributions

to the coda power due to multiple-scattering from a uniform distribution

of isotropic scatterers in a two-dimensional infinite elastic medium

have been numerically evaluated. The results show that at shorter lapse.’
time, the coda power is well explained by the single-scattering theory.

At longer lapse time, this is inadequate and the effects of”multiple-

scatte~ing need to be considered. The neglect of multiple-scatt’ering  .

gives rise to an overestimate on of the values of the quality factor (Q)

bya factor of 3.85.
.,

Introduction:

Knopoff and Hudson (1964) treated the problem of forward scattering “

of P- and S-waves by a randomly inhomogeneous  elastlc medium and showed

that the scattered waves are primarily of the S-type. Aki (1969) con- :

sidered the back scattering of the same wave-types by heterogeneities in

the lithosphere. He showed that the coda waves observed for local

earthquakes can be explained in terms of the back scattering of the

primary waves in the lithosphere.

Using coda waves for 1 ocal earthquakes, Aki and Chouet (1975),

Rautian arid Khalturin (1978), Aki (1980a,b), Herrmann (1980) and~ingh

{1 981) investigated the quality factor (Q) of seismic waves for fre-

quencies greater than 0.1 Hz. Aki (1981a) synthesized the results ofQ

measurements and showed that the Q values of coda waves closely agree to

those measured for S-waves. Also, he showed that the seismograms for

coda and S-waves exhibit identical station-site effects. Integrating



these observations with the results on the mechanism for the generation

of coda waves mentioned above, Aki (1931b) concluded that the coda waves

are S-to-S back-scattered waves.

The studies cited here, including those ofSato (1977a,b; 1978) and

Kopnichev (1975, 1977) are based on the single-scattering theory. Tinis

theory is valid provided the mean free paths of the waves.between the

scatterers are greater-than the travel distances from the scatterers to. .

receiver. However, there may be physical situations where the above

conditions are not valid. For such cases, contribution from multiple-

scattering to the seismic coda may become important.

In the present study, we therefore considered the effects of

multiple-scattering on coda waves for a two-dimensional geometry. Me

approached the problem by following the single-scattering theory of Aki

(1969) and Aki and Chouet (1975). “However, to maintain a continuity of ●

the presentation with the works of Aki and colleagues, we first”restate

the problem of single-scattering and then proceed to compute the effects ~ :

of higher-order scattering.
f .

Mathematical Preliminaries: Single-Scatterin~

Consider a two-dimensional infinite elastic medium in which numerous,

statistically isotropic scatterers are distributed uniformly. For this

physical condition, we represent the energy due to single-scattering per

unit area in the form:

+h.drn)12
27rrn

where IJ is the scattering cross-section of the scatterer at distance rn
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from the station, $(~lrn) is the amplitude spectrum of the incident wave

at rn. The power spectral density, then can be expressed as

x ul+(ulrn)lz
p(wlt)At = 2mn

r<rncr+Ar

hfe assumed in (2) that the scatterers
.

c are distributed in the area bounded by r

that both

share the

source of

the incident and scattered waves

(2)

with isotropic cross-section

and P+Ar. Also, we assumed

are of the same kind and

same propagation velocity (v) and the station (receiver) and

the primary waves are located at the same place. The scattered

waves from the scatterers

interval (t, t+At), where

At = 2Ar/v

in (r, r+lw) arrive at the station i“n the time

t=2r/v and hence,

{3) “

in (3}, it is implicit that the source dimension of the primary waves is \

small in comparison to volt.

Let no be the density of scatterer per~nit area in (r,r+m).

In terms of n (2) becomeso’

or p(w

27mArn00
t)At = $(ti]r)  2

2m

Substituting (3) in (4), we get

p(u]t)  = ‘njo 10( Wlr)12

.(4)

(5)

For the conservation of energy (E), we have
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{6)

where $(wlro)

In. terms

‘to scattering

is the amplitude ”spectrum  at the reference distance r
o“

of the quality factor Q, the fractibna? loss of energy due

and intrinsic absorption per cycle $s 2T/Q and the atten-

uation in power during the time period t is exp(-ot/Q), where u is the

angular frequency. Incorporating the attenuation factor and (6) in (5),

we get

. . .,.

norouio(~lro}12
p(ult) ,=

t exp(-@J). {7)

where we replaced v/2 by r/t. .

Multiple-Scattering: ~

In order to explain the computational procedures used here, we

first consider the effects of double and triple-scattering.

(a) Double-Scattering:

For this case we consider the contribution to the coda of the

scatterers in the two-dimensional area 2rc_r1 + r2 + r3 ~2(?+Ar).
 -

Here r = vt/2~ rl and r2 are the distances between the source (receiver

occupies the same place as the source) and the first scatterer and

between the first and second scatterers, respectively. r3 is the

distance between the second scatterer and the receiver (Fig.1).

We consider next, an uniform distribution of the second scatterer,

thereby constituting a set of scatterers in the area between two concentric

.
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ellipses (Fig. 1) with foci at S and A. The first scatterer is held

fixed for the time

ellipses” are then,

terers between the

being at rl. The major axes of the inner and outer

2r-rl and 2(r+Ar)-rl, respectively. For the scat=

two ellipses, there are two sources of incident

waves--one at S represented by the source of the primary waves and the

other at A due to scattering of the primary waves by the first scatterer.

The scattered waves originating at A can be expressed in the form:

(8)

where ~(wlrl) is the amplitude spectrum of the primary waves at rl and

c is the cross-section of the scatterer situated at this point,

In terms of a reference distance ro, (8) becomes
.

(9)
.

Using (9) and following the same approach as used for the single-scattering :

case, we can represent the square of the amplitude spectrum at r for the

double-scattering case in the form

(10)

(10) represents the contribution of a pair of scatterers, one being in

the area between the two ellipses and the other at rl from the receiver.

Consider an elemental area AA (Fig. 1) wi~h no as the density of

scatterer. The elemental area AA can be expressed as

AA=33r AOAr (11).
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The equation of the inier ellipse In polar coordinates (r,e) is

J.&.A
‘3 = a-c cose - { 1 2 )

where e is the”angle between r] and r3; it is measured counterclockwise.

a is the semi-major axis and is given by

2r-r,
a—=

2 (13)

or ha = Ar (14)
. .

,.
‘1For fixed” c.= ~, we have

t) r~
‘rs ‘iF--Aa (?5)  ●

For fixed e, using (12) we write (15) in the form
.

Ar =3

$ubsti tuti ng (14}

AR =

~2sjn2~
(1 +

(a-c cose)
2)Aa

and (?6) in (11), we get

&

Thus, the contribution

2 1c sin26 -

r3ArAe
(a-c cose)2

of all scatterers in the area between the two

ellipses can be expressed in the form
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n
!

() l@(@lr) 12dA = ‘ou2rovAtI @(uiro)]2 ex.p(-WQ)
8~2rl

A“

/[

2
1+

1
c sin26 “ de

(a-c COS9)2 -‘F~.”

(18)

where we replaced Ar by VAt/2. A is the area between the t“wo ellipses.
. .

Tie number of first scatterers in the interval (rl, rl+Arl) is

27rrlArln0. The power spectral density of the waves arriving in the time

interval (t, t+At) for double-scattering then becomes

?

Using (18) in (16), we get .

p(u]t) =  ~~U2rOvl$(U~rO)]2 exp(-d/Q)K2

where , . .

‘.

‘1Substituting t =Fin (21),-we get

1 2$
r *

H 2-t(l+cose)
‘2 = ‘t

2-(2t-t2)(l+cosg)
00

2 “
‘1 sin2e 1 de (21)

(2r-rl-rl COS9)2

[
1 + t2sin2e

{ J
1 de (22)

2-t(l+cos$)  2
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b. Triple-Scattering.:

In this case, the scatterers being located at r~, r2 and r3 satisfy

the condition 2r ~rl+r2+r3+r4 ~2(r+Lr), where r = vt/2, rl, r2 and r
3

are the distances between the receiver and first scatterer, between

first and second scatterer and between second and third scatterer,

respectively. r4 is the distance between the third scatterer and the

receiver. As before, the square of the amplitude spectrum at r can be

expressed in the form

(23)

where the quantities on

quantities as in (10).

the left- and right-hand sides denote the” same

For computational purposes, we fix the positions of the first and ●

second scatterers at rl and r2, respectively, and take into account the

third scatterers distributed

such that (2r-rl-r2)  < r +r
3 4

following a similar approach

integrate with respect to r2

.
in the area between two concentric ellipses, “

< [2(r+Lr)-rl-r2]  is satisfied. Next,

as used for the double-scattering case, we

and r] for 0~r2”~ (r-rl) and O&rl ~r,

respectively. The power spectral density, thus can be expressed in the

form

‘Jnnidr1~n;2d% ~~~~~r>~) “
P(ult)At

o b A .“

l@(~\ro)j2  exp(-ut/Q)dA (24)

or
T %-~ 2r

. n03u3rOvl${~lrO)J2exp(-wt/Q)
p(u]t) =

///
drl 1 a r4

47r 46 (25)‘ r2 ~2r-rl-r2-r41~a
Ooa
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ar~
‘here ‘A = &r ‘4dad6’ ‘a = ‘ r  a n d

a2-c2
‘4 = a-c cosf3 ( 2 6 )

2 a = 2r-rl-r2 (27)

2c = r1+r2 (28)

Using (26’), (27) and (28) in (25), we get

.

[

(tl+t2)2sin2e de

1 + {2-(t1+t2)(l+cose)~2 1
‘1 ‘2

‘here ‘1 ‘Y and ‘2 ‘F-e

In general, the contribution to the seismic coda for kth order

scattering can be expressed in the form

1 ‘k-2)n ‘okvl$(~lr )[2E%p(-(Ut/~)Kkpk(~]t) ‘~ror o 0 (32)
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0 0 0 0

[

~2~in28
1+ 1 de

(a-c cose)z

0 0 0
\

2-~(l+cose)  ‘

2-\2?p3(l+cos6)
o

[

T22sin20
1+ 1’]2-q7+cose) f ‘*

(33)

(34)

●

Instead of solving the integrals for Kk (k= 1, 2, . ..) analytically, ~

we evaluated them numerically. The values of Kk for different k up to

k = 7 are given in Table 1, which were obtained by Gauss’s integration

method. Since the value of pk(u]t) decreases rapidly with increasing

order of scattering, we restricted the computation to k 57.

The power spectral density of the coda waves due to multiple

scattering can thus be expressed in the form .

P(u]t) = P$ult) + Pm(w\t) (35.)

In (35), Ps(ult) and Pm(uIt) represent the contributions for single and

multiple scattering, respectively, where
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and Pm(w It) for nth order scattering is

Pm(uIt) =n02u2vrOl+(ulrO) 12exp(-ut/Q)~[akBk-2] (37)

where ak are numerical ‘constants which are given in Table 1 for dif -

ferent k and s = no&.

It may be ~oted that

have dimensions of length

scatterer. Thus B = nom

values of ak (k = 2, 3,”..

for the two-dimensional geometry, o and n
o

L and L-2, respectively, for unit mass of each

is a dimensionless quantity. Using the

.) from Table 1, the polynomial in the square .

bracket in (37) can be fitted by the function exp(O.74p) In the interval

O ~ ~~3 for 99 percent confidence limits. We thus rewrfte (37) in the  ●

fw’in
,’

Pm(@l’t) = (nou)zrov] $(ulrO) 12 exp(O.74s-~t/Q)

.-

Or

Pm(uIt}  = S exp(O.74&~t/Q),  0~B~3

where

s= (nod%ov14@-o)j2

Using (39}, we rewrite (36) in the form

(39)

.

(38)

P@@) = &exp (-tit/Q) (40)
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Substituting (38) and (40) in (35), we”get “

P(Ollt)
[

= S exp(-wt/Q)  & + exp(O.745) 1
Since the dimensionless quantity B represents the

to scattering, we express the quality factor Q~ due to

in the form

or

(41)

loss in power due

single scattering

(42)

where u is the angular frequency. Recall that the quality factorQ

represents the combined loss due to single scattering and intrinsic

absorption. Let Qi represent the quality factor for intrinsic absorption. .

In terms of Q~ and Qj, Q becomes ,-

Substituting (42) and (43) in (38) and (40], we get

(44)

and . .

(43) -

(45)

From the time dependence,t-l of (45), it follows that at short lapse

time t (time measured from the origin time of the source) and for a

given value of M, the contribution from single-scattering dominates
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the power spectral density of coda waves. However, as t increases, the

contribution to the power spectral density from multiple-scattering

becomes dominant. Thus, at sufficiently large values of t, the deter-

mination of Q values on the basis of single-scattering theory yields an

overestimation of Q values

can be seen from (44).

. ...> In order to elaborate

Pm(ult)/S  and Ps~~lt)/Sas

(41), (44) and (45). Here

by a factor of3.85 (reciprocal. of 0.26), as

.-

the above observations, we compu~ed P(~]t)/S,

a function of p and’~= 1.0, 0.5 and 0.1 from

quantities as in (43). The results of computations are given in Figs.
,.

2a, band c. i.

It may be noted in Figs. 2a, b and c that the graphs of P~(tilt)/S

and Pm(~lt)/S  as a function of B for all the three values of ~ intersect

for a value of B = PC, where Bc = 0.38 corresponding to a time t=.tc. ●

For B > 0.38 and ~of 1.0 and 0.5, the contribution to the coda from

multiple-scattering starts dominating with increasing values of B.

However, single-scattering accounts well the-power in the coda for

% = nom < Bc or for traveJ time tc c ~.7b(nou~)-1.

The quantity nou has been called turbidity by Aki and Chouet

{1975); it has the dimension of the reciprocal of mean-free path. For

the LASA area in Montana, Aki (1980) obtained a value of 0.008 km-~ for

noO. This value with v = 3.5 km/see (velocity of S-waves in the upper

part of the lithosphere} and Bc = 0.38 yields a travel time (tc) of28
.“

sec. Thus, for travel time (t) in the range of 100 to 200 see, at least

for the LASA area, the contribution of mujtiple-scattering to the coda

section of the seismograms for local earthquakes would be important.
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For ~ = 0.1 (Fig. 2c), the power in coda decreases rapldlyto an

insignificant level at 8 = Bccompared to the other two values of~.

Therefore, the overall contribution of single scattering to the coda is

more important than those of multiple scattering; thus for this value of

o, the effects of multiple scattering can be neglected.

Conclusions:”

In this study, the single scattering theory of Aki (1969) for coda -

waves has been extended to the multiple-scattering case for a two-

dimensional elastic medium consisting of a uniform distribution of

numerous but statistically isotropic scatterers. For this physical

condition of the medium, the power spectral density of coda waves for

the nth order scattering has been expressed in integral form. Numer-

ically integrating this expression up to 7th order scattering the ●

contributions to the coda power from single- and multiple-scattering are

compared. ‘ .

The results of the comparison show that.at shorter lapse time

t< tc, the properties of coda waves are well explained by the single-

scattering theory. However, for lapse time t > tc, ~he single-scattering

theory is not adequate in explain~ng  the coda waves. Rather, the con-
.

tributions to the coda power from mu~tiple-scattering  become important.

At longer lapse. time t >> tc, the determination of the quality factor Q

on the basis of sfngle-scattering thkory yields an overestimation of the

Q values by a factor of 3.85.
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TABLE 1.

Values of Kk and ak are shown for different

k ‘k ‘k

2 1 2 . 5 1.0

3 8.31 0.66

4 3.26 0.26

5 “0.921 0.074

6 0.203 0.016

7 0.035 0.0028

. .

values of k.

-,

.

.
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Figure Captions:

Figure 1. The

Figure 2. “The

.

-.

and

The
are

(b)

geometry for the distribution of scatterers. .’

relationship of coda power ds a function of B

T are shown for single- and multiple-scattering.

values ofP(~lt)/S, Ps(~lt)/S  and Pm(wlt)/S

shown as a function of B. (a) ~= I.O.

~ = 0.5, and (c) ~ = 0.1. Note that the total
power spectral density of coda waves is

P(w[t)  = ps(~lt) ‘pm(u@,  where Ps(~lt) and
Pm(uIt) a-~e the power spectral densities due to,
single- and multiple-scattering, respectively.

.
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